The fast-growing market of organic electronics stimulates the development of versatile technologies for structuring thin-film materials. Ultraviolet lasers have proven their full potential for patterning organic thin films, but only a few studies report on interaction with thin-film barrier layers. In this paper, we present an approach in which the laser patterning process is optimized together with the barrier film, leading to a highly selective patterning technology without introducing barrier damage. This optimization is crucial, as the barrier damage would lead to moisture and oxygen ingress, with accelerated device degradation as a result. Following process optimization, a laser processed flexible organic LED has been fabricated and thin-film encapsulated and its operation is shown for the first time in atmospheric conditions.