There is an increasing interest in producing organic tomatoes (Solanum lycopersicum) in high tunnels (HTs) in the southeast United States. HTs are unheated, passively cooled structures that allow tomato growers to harvest high-quality fruit out of season. However, excessive temperatures inside HTs may negatively impact tomato plant growth and fruit yield. Shade nets have been reported to reduce temperatures inside the HTs. Plastic mulch color has also significantly influenced plant growth and yield under high-temperature conditions. This study aimed to determine the effects of shade net color and plastic mulch color on plant growth, fruit yield, and incidence of tomato yellow leaf curl disease (TYLC) in ‘Red Snapper’ tomato grown in HTs under elevated temperatures (summer-fall) in southern Georgia, USA. Organic ‘Red Snapper’ tomato seedlings were transplanted in HTs in 2019 (Season 1) and 2020 (Season 2). The design was a split-plot randomized block where the main plots were externally mounted shade nets (black, silver, and unshaded; 30% shade factor), and the subplots were plastic mulches (black and white). Compared with black mulch, white mulch improved plant height and stem diameter but did not influence fruit yields. Shade nets reduced HT air temperature and root zone temperature (RZT) but did not affect plant height and stem diameter. The diminished photosynthetic photon flux density (PPFD) under the shade nets reduced marketable fruit yield. Thus, shade nets are not recommended once heat challenges do not limit HT tomato production in Georgia (after about mid-October). Shade nets and plastic mulch inconsistently affected TYLC incidence, severity, and area under the disease progress curve (AUDPC). Additional fruit yield reductions occurred due to TYLC because the incidence was 100% 6 weeks after transplanting. Preliminary insect data showed that shade net treatments had similar sweetpotato whitefly (Bemisia tabaci) numbers. The high TYLC incidence indicates that ‘Red Snapper’ may not be suitable for fall HT tomato production in the southeast United States. More research on shading and heat stress management in HT organic tomato production is necessary.