ReuseUnless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version -refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.
TakedownIf you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
ÔØ Å ÒÙ× Ö ÔØ
A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT
AbstractFibrin is an important matrix protein that provides the backbone to the blood clot, promoting tissue repair and wound healing. Its precursor fibrinogen is one of the most heterogenous proteins, with an estimated 1 million different forms due to alterations in glycosylation, oxidation, single nucleotide polymorphisms, splice variation and other variations. Furthermore, ligation by transglutamimase factor XIII (cross-linking) adds to the complexity of the fibrin network. The structure and function of the fibrin network is in part determined by this natural variation in the fibrinogen molecule, with major effects from slice variation and cross-linking. This mini-review will discuss the direct effects of fibrinogen EC and fibrinogen ' splice variation on clot structure and function and also discuss the additional role of fibrinogen ' as thrombomodulin II. Furthermore, the effects of crosslinking on clot function will be described. Splice variation and cross-linking are major determinants of the structure and function of fibrin and may therefore impact on diseases affecting bleeding, thrombosis and tissue repair.