Grasslands have been lost and degraded in the United States since Euro-American settlement due to agriculture, development, introduced invasive species, and changes in fire regimes. Fire is frequently used in prairie restoration to control invasion by trees and shrubs, but may have additional consequences. For example, fire might reduce damage by herbivore and pathogen enemies by eliminating litter, which harbors eggs and spores. Less obviously, fire might influence enemy loads differently for native and introduced plant hosts. We used a controlled burn in a Willamette Valley (Oregon) prairie to examine these questions. We expected that, without fire, introduced host plants should have less damage than native host plants because the introduced species are likely to have left many of their enemies behind when they were transported to their new range (the enemy release hypothesis, or ERH). If the ERH holds, then fire, which should temporarily reduce enemies on all species, should give an advantage to the natives because they should see greater total reduction in damage by enemies. Prior to the burn, we censused herbivore and pathogen attack on eight plant species (five of nonnative origin: Bromus hordaceous, Cynosuros echinatus, Galium divaricatum, Schedonorus arundinaceus (= Festuca arundinacea), and Sherardia arvensis; and three natives: Danthonia californica, Epilobium minutum, and Lomatium nudicale). The same plots were monitored for two years post-fire. Prior to the burn, native plants had more kinds of damage and more pathogen damage than introduced plants, consistent with the ERH. Fire reduced pathogen damage relative to the controls more for the native than the introduced species, but the effects on herbivory were negligible. Pathogen attack was correlated with plant reproductive fitness, whereas herbivory was not. These results suggest that fire may be useful for promoting some native plants in prairies due to its negative effects on their pathogens.