Concrete floors are most commonly used in animal housing. However, the specific environment of livestock buildings (moisture, urine, disinfectants) has a negative effect on concrete and leads to its corrosion. The influence of chemical and physical factors on concrete is reinforced by the development of microorganisms, which quickly adapt and use concrete as a living environment.
To reduce the influence of an aggressive environment on the concrete floor, an experimental mixture of dry disinfectants was proposed.
The components of the disinfection mixture have been selected taking into account the safety for animals and humans.
The TPD-MS method was used to determine the change in the chemical composition of concrete. To study the microstructure of concrete, the method of scanning electron microscopy was used.
Microbiological studies revealed bacteria A. Thiooxidans, S. aureus, E. coli, S. enteritidis, S. Сholeraesuis, C. Perfringen and micromycetes of the genus Cladosporium, Fusariums, Aspergillus, which contribute to the development of biological corrosion of concrete in livestock buildings. The fact of the negative impact of concentrated disinfectants on the structure of concrete was also established.
As a result of the studies carried out, it was proved that a mixture of dry components for disinfection exhibits antimicrobial properties to varying degrees to the strains of field isolates of bacteria and fungi isolated in a pig-breeding farm. It was found that when using the proposed mixture of dry disinfectants in the research room of the pigsty, the relative humidity decreases by 38.5 %; ammonia content – by 46.2 %; hydrogen sulfide – by 57.8 %; microbial bodies – by 74.7 %, compared with the control room.
It has been experimentally proven that the proposed mixture of dry disinfecting components has hygroscopic and antimicrobial properties and is promising for use in livestock farms.