Based on numerical techniques, in this paper, we study light propagation in two types of waveguide arrays. One array contains hexagonal cells, and the second contains honeycomb cells. The waveguides demonstrate the well-confined mode condition and possess Kerr nonlinearity. The mathematical model is based on the modified discrete nonlinear Schrödinger equation, which allows us to evaluate the influence of the array geometry on nonlinear light propagation, primarily the process of discrete soliton formation. The main conclusion involves the role of the coupling length; the greater the coupling length, the lower the power threshold required for discrete soliton formation.