Based on the numerical experiment techniques, we addressed this work to the study of the physical parameters, which allow the discrete soliton formation and propagation in two dimensional waveguide arrays of different geometries. The mathematical model is based on the two dimensional nonlinear Schrödinger equation, and from the boundary conditions we are able to conclude that the array geometry plays an important role in the energy demands for the discrete soliton formation and propagation over distances of hundreds of diffraction lengths. Furthermore, our results are consistent even in the case when we take into account coupling of higher orders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.