Concretes that contain binary-blended binders (BBB) and ternary-blended binders (TBB) incorporating thermally activated alum sludge ash (AASA), silica fume (SF), ground-granulated blast-furnace slag (GGBS) and palm oil fuel ash (POFA) are exposed to temperatures as high as 800 °C. The water-binder ratio of the multiple-blended binder (MBB) concretes was 0.30, and the total binder and polypropylene (PP) fibre contents were 493 and 1.8 kg/m 3 , respectively. The elevated temperature performance of the MBB concretes is evaluated in terms of the mass loss, compressive strength, ultrasonic pulse velocity (UPV) and surface cracks. The concrete strength deteriorated significantly due to elevated temperature up to 800 °C, but the residual strength of the BBB containing 15 % AASA was higher than that of the control and 20 % AASA concretes. Hightemperature exposure decreased measured UPV values. The concrete weight loss was more pronounced for TBB concretes. The elevated temperature performance of all of the TBB concretes was better than that of the BBB concretes with the same AASA replacement levels. It was observed that PP fibres help reduce spalling. BBB concrete containing 15 % AASA combined with either SF or GGBS or POFA exhibits superior performance at elevated temperature than Portland cement concrete at the same mix design proportion.