This study aimed to compare sprint, jump performance, and sprint mechanical variables between endurance-adapted milers (EAM, specialized in 1500–3000-m) and speed-adapted milers (SAM, specialized in 800–1500 m) and to examine the relationships between maximal sprint speed (MSS), anaerobic speed reserve (ASR), sprint, jump performance, and sprint mechanical characteristics of elite middle-distance runners. Fifteen participants (8 EAM; 7 SAM) were evaluated to obtain their maximal aerobic speed, sprint mechanical characteristics (force–velocity profile and kinematic variables), jump, and sprint performance. SAM displayed greater MSS, ASR, horizontal jump, sprint performance, and mechanical ability than EAM (p < 0.05). SAM also showed higher stiffness in the 40-m sprint (p = 0.026) and a higher ratio of horizontal-to-resultant force (RF) at 10 m (p = 0.003) and RFpeak (p = 0.024). MSS and ASR correlated with horizontal (r = 0.76) and vertical (r = 0.64) jumps, all sprint split times (r ≤ −0.85), stiffness (r = 0.86), and mechanical characteristics (r ≥ 0.56) during the 100-m sprint, and physical qualities during acceleration (r ≥ 0.66) and sprint mechanical effectiveness from the force–velocity profile (r ≥ 0.69). Season-best times in the 800 m were significantly correlated with MSS (r = −0.86). Sprint ability has a crucial relevance in middle-distance runners’ performance, especially for SAM.