Between August and November 2018, a seismic sequence took place in the vicinity of Golfito, a city in the Dulce Gulf in Southeastern Costa Rica. The main shock had a moment magnitude (Mw) of 6.1 and was widely felt in Costa Rica and Western Panama, with maximum Modified Mercalli intensities of VI. In this region, the oceanic Cocos Ridge, riding on top of the Cocos Plate, subducts beneath the Panama Microplate. Using the seismic records from the National Seismological Network of Costa Rica, in this work the seismicity is relocated using the double-difference technique, and an analysis of its temporal and geographic distribution together with the focal mechanism and intensities of the strongest events are presented. The results show that the sequence occurred at the interplate seismogenic zone, within the rupture area of the 1983 Golfito earthquake (7.4 Mw), between 12 and 27 km depth, in a cluster dipping 35º northeast underneath the Dulce Gulf. Based mainly on these results and on previous seismic sequences, it is here proposed that the seismogenic zone in Southeastern Costa Rica has an extension of ~160 x 45 km. Further, during the Golfito sequence, the rupture of an inverse fault (5.9 Mw) took place within the Cocos Plate beneath the Dulce Gulf, as well as of dextral strike-slip faults (4.6-5.6 Mw) in the Panama Microplate, 50 km away of the Dulce Gulf. The analysis of the interseismic interplate seismicity contributes to a better understating of the dynamics of the seismogenic zone. This is of particular relevance in Southeastern Costa Rica, where at least six damaging earthquakes of Mw > 7 have occurred since 1803, implying the impending risk of the next big earthquake in this region.