[1] A 400-km-long seismic reflection profile (Andean Continental Research Project 1996 (ANCORP'96)) and integrated geophysical experiments (wide-angle seismology, passive seismology, gravity, and magnetotelluric depth sounding) across the central Andes (21°S) observed subduction of the Nazca plate under the South American continent. An east dipping reflector (Nazca Reflector) is linked to the down going oceanic crust and shows increasing downdip intensity before gradual breakdown below 80 km. We interpret parts of the Nazca Reflector as a fluid trap located at the front of recent hydration and shearing of the mantle, the fluids being supplied by dehydration of the oceanic plate. Patches of bright (Quebrada Blanca Bright Spot) to more diffuse reflectivity underlie the plateau domain at 15-30 km depth. This reflectivity is associated with a low-velocity zone, P to S wave conversions, the upper limits of high conductivity and high V p /V s ratios, and to the occurrence of Neogene volcanic rocks at surface. We interpret this feature as evidence of widespread partial melting of the plateau crust causing decoupling of the upper and lower crust during Neogene shortening and plateau growth. The imaging properties of the continental Moho beneath the Andes indicate a broad transitional character of the crust-mantle boundary owing to active processes like hydration of mantle rocks (in the cooler parts of the plate margin system), magmatic underplating and intraplating under and into the lowermost crust, mechanical instability at Moho, etc. Hence all first-order features appear to be related to fluid-assisted processes in a subduction setting.
The plate‐bounding Alpine Fault in New Zealand is an 850 km long transpressive continental fault zone that is late in its earthquake cycle. We have acquired and processed reflection seismic data to image the subsurface around the main drill site of the Deep Fault Drilling Project (DFDP‐2). The resulting velocity models and seismic images of the upper 5 km show complex subsurface structures around the Alpine Fault zone. The most prominent feature is a strong reflector at depths of 1.5–2.2 km with an apparent dip of 48° to the southeast below the DFDP‐2 borehole, which we assume to be the main trace of the Alpine Fault. Above the main reflector, parallel reflectors suggest the presence of a ∼600 m wide damage zone. Additionally, subparallel reflectors are imaged that we interpret as secondary branches of the main fault zone. Conjugate faults imaged by the data show the complexity of the subsurface. The derived P wave velocity model reveals a 300–600 m thick sedimentary layer with velocities of ∼2.3 km/s above a schist basement with velocities of 4.5–5.5 km/s. A low‐velocity layer can be observed within the basement at 0.8–2 km depth. A small‐scale low‐velocity anomaly appears at the top of the basement that can be correlated to the fault zone. The results provide a reliable basis for a seismic characterization of the DFDP‐2 drill site that can be used for further structural and geological investigations of the architecture of the Alpine Fault in this area.
If the aperture of a seismic reflection experiment is strongly limited, Kirchhoff migration suffers from strong artifacts attributable to incomplete summation. This can be overcome by restricting the migration operator to the region that physically contributes to a reflection event. Examples of such limited-aperture experiments include data acquisition in boreholes, tunnels, and mines. We present an extension to three-component (3C) Kirchhoff prestack depth migration, where the migration operator is restricted to the Fresnel volume of the specular reflected raypath. We use the measured polarization direction at a 3C receiver to determine points of specular reflection. In homogeneous media, the polarization angle of 3C data can be used directly to decide whether a certain image point belongs to the Fresnel volume of a specular reflection. In heterogeneous media, the Fresnel volume around an image point is approximated by means of paraxial ray tracing. The method is tested on a synthetic vertical seismic profiling experiment with strongly limited aperture. Migration artifacts and crosstalk effects from converted waves are strongly reduced compared with standard migration schemes. The method is successfully applied to seismic data acquired in a tunnel.
A B S T R A C TWe present the results of a 3D seismic survey acquired near the city of Schneeberg in the western Erzgebirge (Germany). The main objective of this survey was to use reflection seismic exploration methods to image a major fault zone in crystalline rock, which could serve as a geothermal reservoir at a target depth of about 5 km-6 km with expected temperatures between 160 • C-180 • C. For this purpose, a high-resolution 3D Vibroseis survey was performed in late 2012 covering an area of about 10 km × 12 km. The 3D survey was complemented by a wide-angle seismic survey for obtaining velocity information from greater depths using explosives along ten profile lines radially centred at the target area. The region itself is dominated by the northwestsoutheast striking Gera-Jáchymov fault system and the southwest-northeast striking Lössnitz-Zwönitz syncline. The main geological features in the survey area are well known from intensive mining activities down to a depth of about 2 km. The seismic investigations aimed at imaging the partly steeply dipping fault branches at greater depths, in particular a dominant steeply northeast dipping fault (Roter Kamm) in the central part of the survey area. In addition to this main structure, the Gera-Jáchymov fault zone consists of a series of steeply southwest dipping conjugate faults. For imaging these structures, we used a focusing pre-stack depth migration technique, where the wavefield coherency at neighbouring receivers is used for weighting the amplitudes during migration. This method delivers a clear, focused image of the 3D structures within the target area. A 3D velocity model for depth imaging was obtained by first-arrival tomography of the wide-angle survey data. With this approach, we were able to image several pronounced structures interpreted as faults within the crystalline rock units, which partly reach the target depth where the temperatures for a geothermal usage would be sufficient. In general, the results show a complex three-dimensional image of the geological structures with different reflection characteristics, which can serve as a basis for a detailed characterization of the potential deep geothermal reservoir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.