Several major earthquakes (Mw>7) have occurred in this gap since 1850 (Fig. 1); the largest until now was the Mw 7.7 Tocopilla earthquake in 2007, which broke the southern rim of this segment beneath and north of Mejillones Peninsula along a total length of 150 km. Only the downdip end of the locked zone slipped in this event, and the total slip in the rupture area was less than 2.6 m 6,7 leaving most of the past slip deficit of c. 8-9 m accumulated since 1877 3 approaches. First, we performed waveform modelling of local strong motion seismograms and teleseismic body waves to constrain the kinematic development of the rupture towards the final displacement in a joint inversion with continuous GPS data of static displacements (Fig. 1, 2a). Second, we use the backprojection technique applied to stations in North America to map the radiation of high frequency seismic waves (HFSR; 1-4 Hz) 9,10 . The latter technique is not sensitive to absolute slip amplitudes, but rather to changes in slip and rupture velocity.During the first 35-40s the rupture propagated downdip with increasing velocity, nearly reaching the coastline (Fig. 2a,b). Surprisingly, towards the end of the rupture, the area near the epicenter was reactivated. In spite of the relatively complicated kinematic history of the rupture the cumulative slip shows a simple 'bull's eye' pattern with a peak coseismic slip of (Fig. 3a). The Iquique main shock nucleated at the 4 northwestern border of a locked patch and ruptured towards its center (Fig. 2a, 3a). The downdip end of the main shock as well as for the large Mw 7.6 aftershock rupture mapped both by the HFSR and co-seismic slip agrees quite accurately with the downdip end interseismic coupling (Fig. 2a,c 3a). The accelerated downdip rupture propagation for both earthquakes closely followed the gradient towards higher locking. Therefore, the Iquique event and its largest aftershock appear to have broken the central, only partly locked segment of the Northern Chile Southern Peru seismic gap releasing part of the slip deficit accumulated here since 1877 (cf. Fig. 1).The seismicity before the Iquique earthquake also concentrates in this zone of intermediate locking at the fringe of the highly locked -high slip patch (Fig. 3a). Starting in July 2013, three foreshock clusters with increasingly larger peak magnitudes and cumulative seismic moment occurred here (Fig. 2c, 3a,c). The mainshock rupture started at the northern end of the foreshock zone, inside the region of intermediate locking (Fig. 2c, 3a). Interestingly, the second foreshock cluster (January 2014) is associated with a weak transient deformation, whereas the third cluster (March 2014) shows a very distinct transient signal. GPS displacement vectors calculated over the times spanning these foreshock clusters point towards the cluster epicentres (Extended Data Figure 4). Deformation for both transients is entirely explained by the cumulative coseismic displacement of the respective foreshock clusters (Fig. 3d inset, Extended Data Figure 4). The ar...
The magnitude-8.8 Maule (Chile) earthquake of 27 February 2010 ruptured a segment of the Andean subduction zone megathrust that has been suspected to be of high seismic potential. It is the largest earthquake to rupture a mature seismic gap in a subduction zone that has been monitored with a dense space-geodetic network before the event. This provides an image of the pre-seismically locked state of the plate interface of unprecedentedly high resolution, allowing for an assessment of the spatial correlation of interseismic locking with coseismic slip. Pre-seismic locking might be used to anticipate future ruptures in many seismic gaps, given the fundamental assumption that locking and slip are similar. This hypothesis, however, could not be tested without the occurrence of the first gap-filling earthquake. Here we show evidence that the 2010 Maule earthquake slip distribution correlates closely with the patchwork of interseismic locking distribution as derived by inversion of global positioning system (GPS) observations during the previous decade. The earthquake nucleated in a region of high locking gradient and released most of the stresses accumulated in the area since the last major event in 1835. Two regions of high seismic slip (asperities) appeared to be nearly fully locked before the earthquake. Between these asperities, the rupture bridged a zone that was creeping interseismically with consistently low coseismic slip. The rupture stopped in areas that were highly locked before the earthquake but where pre-stress had been significantly reduced by overlapping twentieth-century earthquakes. Our work suggests that coseismic slip heterogeneity at the scale of single asperities should indicate the seismic potential of future great earthquakes, which thus might be anticipated by geodetic observations.
The Central Andes are the Earth's highest mountain belt formed by ocean-continent collision. Most of this uplift is thought to have occurred in the past 20 Myr, owing mainly to thickening of the continental crust, dominated by tectonic shortening. Here we use P-to-S (compressional-to-shear) converted teleseismic waves observed on several temporary networks in the Central Andes to image the deep structure associated with these tectonic processes. We find that the Moho (the Mohorovicić discontinuity--generally thought to separate crust from mantle) ranges from a depth of 75 km under the Altiplano plateau to 50 km beneath the 4-km-high Puna plateau. This relatively thin crust below such a high-elevation region indicates that thinning of the lithospheric mantle may have contributed to the uplift of the Puna plateau. We have also imaged the subducted crust of the Nazca oceanic plate down to 120 km depth, where it becomes invisible to converted teleseismic waves, probably owing to completion of the gabbro-eclogite transformation; this is direct evidence for the presence of kinetically delayed metamorphic reactions in subducting plates. Most of the intermediate-depth seismicity in the subducting plate stops at 120 km depth as well, suggesting a relation with this transformation. We see an intracrustal low-velocity zone, 10-20 km thick, below the entire Altiplano and Puna plateaux, which we interpret as a zone of continuing metamorphism and partial melting that decouples upper-crustal imbrication from lower-crustal thickening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.