The present contribution reviews the recent progress related to the influence of Icosahedral Short-Range Order (ISRO) and icosahedral Quasicrystals (i-QC) formation on the solidification of fcc alloys through minor solute element additions. From intensive crystallographic analysis of multi-twinned regions in as-cast Al-based and Au-based fcc alloys, Kurtuldu et al. have shown recently that a so-called "iQC-mediated" nucleation mechanism occurs when a few hundred ppm of Cr and Ir, respectively, are added to the melt [1] [2]. Similarly, it appears that the growth directions of dendrites in Al-Zn:Cr is also influenced by ISRO in the liquid, thus showing an attachment kinetics effect [3]. In a recent contribution, we have shown that iQC-mediated nucleation also occurs in pink gold alloys with Ir-additions, but two additional phenomena at high solidification speed [4]: (i) a spinodal-type decomposition of the liquid, leading to the formation of twinned Cu precipitates in addition to multi-twinned Aurich grains; (ii) a change of the microstructure of the Au-rich grains, from 100 dendrites to 111textured cells in the columnar zone.