Based on detailed EBSD analyses, Kurtuldu et al [1] have explained the grain refinement of Au-12.5 wt.%Cu-12.5 wt.%Ag (yellow gold) by the addition of minute amounts of Ir in terms of "icosahedral quasicrystal (iQC)-mediated nucleation", i.e., Ir induced the formation of Icosahedral Short Range Order (ISRO) of atoms in the liquid, leading to the formation of iQC on which the fcc-phase forms. In the present contribution, we show that: (i) this mechanism is also responsible of the grain refinement in Au-20.5 wt.%Cu-4.5 wt.%Ag (pink gold) with Ir addition; (ii) ISRO also influences the morphology and growth kinetics of the fcc phase: at solidification rate of a few mm/s, 100 dendrites are replaced by a cellular-type morphology growing along 111 when 100 wt.ppm of Ir is added to the melt; (iii) iQC-mediated nucleation is accompanied by a spinodal decomposition of the liquid, which is revealed at high cooling rate by the formation of Cu-rich particles or dendrites, some of them being also twinned, in parallel to iQC-mediated grain refinement and twin formation.
Grain refinement by inoculation relies upon particles which act as heterogeneous nucleation sites.A novel concept of grain refinement by isomorphic self-inoculation is introduced in this paper.The inoculant particles have the same crystallographic structure as the solidifying phase, and the nucleation stage is replaced by direct epitaxial growth compared to classical inoculation. This concept has been successfully applied to a Ti-Al alloy, where classical inoculants (borides, carbides) can be embrittling in the as-cast state. Casting trials were successful in reducing the ascast grain size as well as increasing the equiaxed grain fraction. It is shown that, opposed to classical inoculation theory, the particle size distribution has no influence and only the number of inoculant particles introduced impacts the final grain size. Moreover, the results suggest that each introduced particle can be responsible for multiple grains found in the as-cast ingot.
The packing of free-floating crystal grains during solidification has a strong impact on the phase-change process as well as on the structure and the defects in the solidified material. The packing fraction is affected by the particular dendritic morphology of the grains and by their low inertia resulting from the small density difference between solid and liquid. Understanding the grain packing phenomenon during metal alloy solidification is not experimentally possible since packing is coupled to many other phenomena. We therefore investigate the packing of equiaxed dendrites on a model system, consisting of fixed-shape nonconvex model particles sedimenting in conditions hydrodynamically similar to those encountered in solidifying metals. We perform numerical simulations by a discrete-element model and experiments with transparent liquids in a sedimentation column. The combination of experiments and simulations enables us to determine the packing fraction as a function of (i) the grain morphology, expressed by a shape parameter, and (ii) the hydrodynamic conditions, expressed by the particle Stokes number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.