Abstract. In this paper the influence of algae life cycle and the solutions pH on the green synthesis of colloidal Ag nanoparticles (AgNPs) as well as effect of different storage conditions on AgNPs long-term stability was investigated. Silver nanoparticles were biologically synthesized using extracts of Parachlorella kessleri algae cultivated 1, 2, 3 and 4 weeks. The formation of AgNPs was monitored using a UV-vis spectrophotometer and verified by TEM observation. The results confirmed formation of polyhedron and/or near polyhedron AgNPs, ranging between 5 and 60 nm in diameter. The age of algae influenced the synthesis rate and an amount of AgNPs in solution. The best results were obtained using tree weeks old algae. UV-vis analysis and TEM observation also revealed that the size and the stability of AgNPs depend on the pH of solution. AgNPs formed in solutions of higher pH (8 and 10) are polyhedron, fine, with narrow size interval and stabile. Nanoparticles formed in solutions of low pH (2, 4 and 6) started to lose their stability on 10 th day of experiment, and the particle size interval was wide. The long-term stability of AgNPs can be influenced by light and temperature conditions. The most significant stability loss was observed at day light and room temperature (21°C). After 200-days significant amount of agglomerated particles settled on the bottom of the Erlenmeyer flask. AgNPs stored at dark and room temperature showed better long-term stability, weak particles agglomeration was observed. AgNPs stored at dark and at temperature 5°C showed the best long-term stability. Such AgNPs remained spherical, fine (5-20 nm), with narrow size interval and stable (no agglomeration) even after more than six months.