Metal-filled composites based on polypropylene waste have been successfully obtained with an injection molding method of metalized polymer raw materials. Using the model polymer, the peculiarities of the formation of the copper layer in solutions of chemical metallization on the polypropylene surface were investigated and the main factors influencing this process were established. The main influence on the rate of reduction of copper in solutions of chemical metallization has the concentration of copper sulfate, sodium hydroxide, and EDTA-Na2. It was shown that the efficiency of the copper plating process also strongly depends on polymer processing, which follows the activation. In case of the use of simple activation, it is not possible to obtain metalized raw materials with high efficiency. Additional processing of activated polymer raw materials is required to carry out the process with high efficiency. The amount of reduced copper on the polymer surface can be adjusted by changing the concentration of the components of the chemical metallization solution, as well as the degree of loading of the polymer raw material. Examination by electron scanning microscopy of the obtained metalized polypropylene showed that the copper coating on the polymer particles is formed with a high degree of surface coverage. The formed copper coating is free of copper oxides, which is confirmed by X-ray diffraction studies and analysis of the spectrum of characteristic X-rays. Metal-filled composites have been characterized by the effect of copper on mechanical and rheological (MFR) properties. The Differential Scanning Calorimetry (DSC) and Thermogravimetric (TG) methods show a certain effect of metal on the magnitude of thermal effects and the rate of weight loss.