An 8-week feeding trial was conducted to determine the optimum dietary phosphorus level of juvenile Japanese flounder Paralichthys olivaceus reared in the recirculating system. The basal diet containing 0.33% total phosphorus (TP) was supplemented with NaH 2 PO 4 ·H 2 O to provide 0.33, 0.51, 0.71, 0.94, 1.10 and 2.12% TP for the experimental diets. Fish averaging 2.0 ± 0.04 g (mean ± SD) were fed in triplicate groups with the experimental diets for 8 weeks. After 8 weeks, fish fed the 0.51% TP diet showed significantly higher weight gain (WG), feed efficiency (FE), specific growth rate (SGR), and protein efficiency ratio (PER) than those fed the 0.33% and 2.12% TP diets ( P < 0.05). Meanwhile, no difference was observed in WG, FE, SGR and PER of fish fed the 0.51, 0.71, 0.94 and 1.10% TP diets. Fish fed the 0.33% TP diet showed phosphorus deficiency symptoms such as poor growth and a deformed head by the end of 8 weeks. Ash and phosphorus contents of bone increased with the increase of dietary phosphorus concentrations. ANOVA test, the quadratic regression analysis, and the broken line analysis suggested that the optimum dietary phosphorus level could be between 0.45 and 0.51% TP for maximum WG in juvenile Japanese flounder.