This research is focused on the immediate contribution of the bees and combs to honey volatiles in order to exclude these compounds as botanical-origin biomarkers for honey authentification. Therefore, the bees were closed in a hive containing empty combs under controlled food-flow conditions (saccharose solution). The obtained 'saccharose honey' probe samples were subjected to ultrasonic solvent extraction (USE), followed by gas chromatography and mass spectrometry analyses (GC and GC/MS). A total of 66 compounds were identified. Higher alcohols made up ca. 50% of the total volatiles, mainly (Z)-octadec-9-en-1-ol, hexadecan-1-ol, and octadecan-1-ol, with minor percentages of undecan-1-ol, dodecan-1-ol, tetradecan-1-ol, pentadecan-1-ol, and heptadecan-1-ol. Other abundant compounds were saturated long-chain linear hydrocarbons, C(10)-C(25), C(27), and C(28), particularly C(23), C(25), and C(27)). Identified chemical structures were related to the composition of combs and cuticular waxes, and less to the bee pheromones. In addition, the impact of two-hour heat treatment at 80 degrees and one-year storage at room temperature on the same probe was investigated in order to identify thermal and storage artefacts. These findings can be considered as blank-trial probe (no plant source) for honey chemical profiling and identification of reliable botanical origin biomarkers.