Context. The Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun (ASPIICS) is a novel externally occulted solar coronagraph that will be launched on board the Project for On-Board Autonomy (PROBA-3) mission in 2023. The external occulter will be placed on the first satellite ∼ 150 m ahead of the second satellite, which will carry an optical instrument. During 6 hours per orbit, the satellites will fly in a precise formation and will constitute a giant externally occulted coronagraph. The large distance between the external occulter and the primary objective will allow observations of the white-light solar corona starting from extremely low heights of ∼ 1.1R ⊙ . Aims. Developing and testing of algorithms for the scientific image processing requires understanding of all the optics-related and detector-related effects of the coronagraph, development of appropriate physical and numerical models, and preparation of simulated images that include all these effects. At the same time, an analysis of the simulated data gives valuable information about the performance of the instrument, the suitable observation regime, and the amount of telemetry. Methods. We used available physical models of the instrument and implemented them as a software to generate simulated data. We analyzed intermediate and complete simulated images to obtain a better understanding of the performance of ASPIICS, in particular, to predict its photometric sensitivity, effect of noise, suitable exposure times, etc. Results. The proposed models and algorithms are used not only to create the simulated data, but also to form the basis for the scientific processing algorithms to be applied during on-ground ASPIICS data processing. We discuss the possible effect of noise and the uncertainty of the calibration factors on the accuracy of final data, and propose suitable exposure times.