Aminoglycosides (AMGs) have been extensively used to treat infectious diseases caused by Gram-negative bacteria in livestock and humans. A selective and sensitive colorimetric probe for the determination of streptomycin and kanamycin was proposed based on chlortetracycline-coated silver nanoparticles (AgNPs–CTC) as the sensing element. Almost all of the tested aminoglycoside antibiotics can rapidly induce the aggregation of AgNPs, along with a color change from yellow to orange/red. The selective detection of aminoglycoside antibiotics, including tobramycin, streptomycin, amikacin, gentamicin, neomycin, and kanamycin, with other types of antibiotics, can be achieved by ultraviolet (UV) spectroscopy. This developed colorimetric assay has ability to detect various AMGs using in-depth surface plasmon resonance (SPR) studies. With this determination of streptomycin and kanamycin was achieved at the picomolar level (pM) by using a UV–visible spectrophotometer. Under aqueous conditions, the linear range of the colorimetric sensor for streptomycin and kanamycin was 1000–1,1000 and 120–480 pM, respectively. The corresponding limit of detection was 2000 pM and 120 pM, respectively. Thus, the validated dual colorimetric and ratiometric method can find various analytical applications for the ultrasensitive and rapid detection of AMG antibiotics in water samples.