Nanoscale defects in superconductors play a dominant role in enhancing superconducting properties through electron scattering, modulation of coherence length, and correlation with quantized magnetic flux. For ironbased superconductors (IBSCs) that are expected to be employed in high-field magnetic applications, a fundamental question is whether such defects develop an upper critical field (Hc2) similar to that of conventional BCS-type superconductors. Herein, we report the first demonstration of a significantly improved Hc2 in a 122-phase IBSC by introducing defects through high-energy milling. Co-doped Ba122 polycrystalline bulk samples (Ba(Fe,Co)2As2) were prepared by sintering powder which was partially mechanically alloyed through high-energy milling. A remarkable increase in full-width at half maximum of X-ray powder diffraction peaks, anomalous shrinkage in the a-axis, and elongation in the c-axis were observed. When lattice defects are introduced into the grains, semiconductor behavior of the electric resistivity at low temperature (T < 100 K), slight decrease in transition temperature (Tc), upturn of Hc2(T) near Tc, and a large increase in Hc2(T) slope were observed. The slope of Hc2(T) increased approximately by 50%, i.e., from 4 to 6 T/K, and exceeded that of single crystals and thin films. Defect engineering through high-energy milling is expected to facilitate new methods for the designing and tuning of Hc2 in 122-phase IBSCs.