The surface free energy and dynamic wettability of wood are important to the performance of its adhesive bonding strength. In this work, the surface free energy of poplar wood samples machined with different processes were calculated by the OWRK (geometric mean) and vOCG (acid-base) methods, and the dynamic wettability of adhesives on wood samples was studied using the S-D wetting model. The results indicate that the contact angles of reference liquids on rotary wood samples were greater than those on planed or sawn wood, and the rotary wood samples were more hydrophobic. The effect of surface roughness on contact angle was insignificant compared with surface structure morphology. The total surface free energy was almost the same for the planed and sawn wood, as calculated by the OWRK and vOCG methods, and the surface free energy of rotary wood samples was lower than that of planed or sawn wood samples. The initial and equilibrium contact angle increased as the viscosity of adhesive increased for all the wood samples, and the contact angles of rotary wood samples were greater than those of planed or sawn wood; however, the K-value was lower. The wettability of the loose side was higher than that of the tight side. Contact angles decreased when surface free energy increased, while the K-value increased.