Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The most recent outbreak of highly pathogenic avian H5 influenza (HPAI) virus in cattle is now widespread across the U.S. with spillover events happening to other mammals, including humans. Several human cases have been reported with clinical signs ranging from conjunctivitis to respiratory illness. However, most of those infected report mild to moderate symptoms, while previously reported HPAI H5Nx infections in humans have had mortality rates upwards of 50%. We recently reported that mice with pre-existing immunity to A/Puerto Rico/08/1934 H1N1 virus were protected from lethal challenge from highly pathogenic clade 2.3.4.4b H5N1 influenza virus. Here, we demonstrate that mice infected with the 2009 pandemic H1N1 virus strain A/California/04/2009 (Cal09) or vaccinated with a live-attenuated influenza vaccine (LAIV) were moderately-to-highly protected against a lethal A/bovine/Ohio/2024 H5N1 virus challenge. We also observed that ferrets with mixed pre-existing immunity, either from LAIV vaccination and/or from Cal09 infection, showed protection against a HPAI H5N1 clade 2.3.4.4b virus isolated from a cat. Notably, this protection occurred independently of any detectable hemagglutination inhibition titers (HAIs) against the H5N1 virus. To explore factors that may contribute to protection, we conducted detailed T cell epitope mapping using previously published sequences from H1N1 strains. This analysis revealed a high conservation of amino acid sequences within the internal proteins of our bovine HPAI H5N1 virus strain. These data highlight the necessity to explore additional factors that contribute to protection against HPAI H5N1 viruses, such as memory T cell responses, in addition to HA-inhibition or neutralizing antibodies.
The most recent outbreak of highly pathogenic avian H5 influenza (HPAI) virus in cattle is now widespread across the U.S. with spillover events happening to other mammals, including humans. Several human cases have been reported with clinical signs ranging from conjunctivitis to respiratory illness. However, most of those infected report mild to moderate symptoms, while previously reported HPAI H5Nx infections in humans have had mortality rates upwards of 50%. We recently reported that mice with pre-existing immunity to A/Puerto Rico/08/1934 H1N1 virus were protected from lethal challenge from highly pathogenic clade 2.3.4.4b H5N1 influenza virus. Here, we demonstrate that mice infected with the 2009 pandemic H1N1 virus strain A/California/04/2009 (Cal09) or vaccinated with a live-attenuated influenza vaccine (LAIV) were moderately-to-highly protected against a lethal A/bovine/Ohio/2024 H5N1 virus challenge. We also observed that ferrets with mixed pre-existing immunity, either from LAIV vaccination and/or from Cal09 infection, showed protection against a HPAI H5N1 clade 2.3.4.4b virus isolated from a cat. Notably, this protection occurred independently of any detectable hemagglutination inhibition titers (HAIs) against the H5N1 virus. To explore factors that may contribute to protection, we conducted detailed T cell epitope mapping using previously published sequences from H1N1 strains. This analysis revealed a high conservation of amino acid sequences within the internal proteins of our bovine HPAI H5N1 virus strain. These data highlight the necessity to explore additional factors that contribute to protection against HPAI H5N1 viruses, such as memory T cell responses, in addition to HA-inhibition or neutralizing antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.