BackgroundSwarm intelligence provides the design and implementation of systems composed of many simple individuals who interact locally and produce remarkable behavior as a whole (Dudek et al. 1996). It provides multiple benefits such as robustness where the performance of the system is not affected significantly with the failure of individuals, simplicity of computational and perceptual capabilities of individuals but still allowing global complex behaviors and scalability of the control mechanism that does not depend on the number of agents (Mitton and Simplot-Ryl 2014). The application of swarm intelligence to collective robotics is identified as Swarm Robotics in El Zoghby et al. (2014). Many artificial systems such as distributed computing systems and artificial intelligence systems are characterized by complex behaviors that emerge as a result of the nonlinear spatio-temporal interactions among a large number of system components at different levels of organization. These systems are known as Complex Adaptive Systems (CAS) as stated by Lansing (2003). Holland (2006) also considers CAS as dynamic systems able to adapt in and evolve with a changing environment. MAF problem is a benchmark problem for swarm robotics. It can be seen as a CAS and defined like in Niazi and Hussain Abstract Background: The foraging task is one of the canonical testbeds for cooperative robotics, in which a collection of robots has to search and transport objects to specific storage point(s). In this paper, we investigate the Multi-Agent Foraging (MAF) problem from several perspectives that we analyze in depth.Results: First, we define the Foraging Problem according to literature definitions. Then we analyze previously proposed taxonomies, and propose a new foraging taxonomy characterized by four principal axes: Environment, Collective, Strategy and Simulation, summarize related foraging works and classify them through our new foraging taxonomy. Then, we discuss the real implementation of MAF and present a comparison between some related foraging works considering important features that show extensibility, reliability and scalability of MAF systems
Conclusions:Finally we present and discuss recent trends in this field, emphasizing the various challenges that could enhance the existing MAF solutions and make them realistic. Zedadra et al. Complex Adapt Syst Model (2017) et al. Complex Adapt Syst Model (2017) 5:3 (2012) as a system made up of multiple simple individuals which interact in a nonlinear fashion, thereby giving rise to global and often unpredictable behaviors. A good way to understand a CAS is to study them in special cases, thus to simulate dedicated behavior from particular perspectives. Holland (2006) states that the analysis of CAS is done through a combination of applied, theoretical and experimental methods (e.g. mathematics and computer simulations). Authors in Fortino and North (2013) state that Agent-Based Modeling (ABM) has proven to provide an effective set of tools for modeling and simulating different ...