Nanotechnology produces basic structures that show a significant variability in their individual physical properties. This experimental fact may constitute a serious limitation for most applications requiring nominally identical building blocks. On the other hand, biological diversity is found in most natural systems. We show that reliable information processing can be achieved with heterogeneous groups of non-identical nanostructures by using some conceptual schemes characteristic of biological networks (diversity, frequency-based signal processing, rate and rank order coding, and synchronization). To this end, we simulate the integrated response of an ensemble of single-electron transistors (SET) whose individual threshold potentials show a high variability. A particular experimental realization of a SET is a metal nanoparticle-based transistor that mimics biological spiking synapses and can be modeled as an integrate-and-fire oscillator. The different shape and size distributions of nanoparticles inherent to the nanoscale fabrication procedures result in a significant variability in the threshold potentials of the SET. The statistical distributions of the nanoparticle physical parameters are characterized by experimental average and distribution width values. We consider simple but general information processing schemes to draw conclusions that should be of relevance for other threshold-based nanostructures. Monte Carlo simulations show that ensembles of non-identical SET may show some advantages over ensembles of identical nanostructures concerning the processing of weak signals. The results obtained are also relevant for understanding the role of diversity in biophysical networks.