Wireless data traffic has experienced an unprecedented boost in past years, and according to data traffic forecasts, within a decade, it is expected to compete sufficiently with wired broadband infrastructure. Therefore, the use of even higher carrier frequency bands in the THz range, via adoption of new technologies to equip future THz band wireless communication systems at the nanoscale is required, in order to accommodate a variety of applications, that would satisfy the ever increasing user demands of higher data rates. Certain wireless applications such as 5G and beyond communications, network on chip system architectures, and nanosensor networks, will no longer satisfy speed and latency demands with existing technologies and system architectures. Apart from conventional CMOS technology, and the already tested, still promising though, photonic technology, other technologies and materials such as plasmonics with graphene respectively, may offer a viable infrastructure solution on existing THz technology challenges. This survey paper is a thorough investigation on the current and beyond state of the art plasmonic system implementation for THz communications, by providing in-depth reference material, highlighting the fundamental aspects of plasmonic technology roles in future THz band wireless communication and THz wireless applications, that will define future demands coping with users' needs. Appl. Sci. 2019, 9, 5488 2 of 34 communications, researchers have been focused on taking advantage of higher regions in the radio spectrum, pointing to the THz band communication and infrastructure, as a promising solution to equip 5G plus networks, thus enabling efficient operation of bandwidth hungry applications, that are not feasible at the moment with current infrastructure.Wireless NoC (WiNoC) [5] with its inherent broadcast capability, appears as a promising approach to overcome all abovementioned bottlenecks of ancestor technologies. Ultra small miniature sizes of plasmon based antennas and other nanolink components as well, with considerably much less wiring, are the desired features of this technology, in order to enable the integration of one or multiple antennas per core, paving the way for dense, scalable NoC schemes, as required by future applications. Graphene based WiNoCs (GWiNoCs) is probably the most updated promising approach for THz nanoscale wireless communications, and it is therefore considered to be the basis for implementing future on chip network architectures. Alternatively, hybrid optical wireless schemes, may be also proved to be a promising NoC solution [6], by combining the best assets of these two worlds: low loss dielectric waveguide media, and miniature sized plasmonic material oscillating at THz rates.Last, wireless nanosensor networks (WNSNs) is another established THz nanoscale application, with basic similarities as in WiNoCs, such as core to core or to memory communication, but also with other unique characteristic types of communication, mainly between nanosensors and nanomachin...