2018
DOI: 10.3788/aos201838.0712006
|View full text |Cite
|
Sign up to set email alerts
|

Infrared Ship Target Detection Method Based on Deep Convolution Neural Network

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
3
0
1

Year Published

2020
2020
2023
2023

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 12 publications
(4 citation statements)
references
References 0 publications
0
3
0
1
Order By: Relevance
“…而纹理分析法过于依赖人工设计的特征, 以致方法的适应性不强, 应用于不同场景时表现 不佳 [15] . 目前, 深度学习被广泛应用于图像分类 [16] 、目 标检测 [17] (cross entropy, CE) [25] , 二分类条件下的 CE 表示为 Sigmoid 函数 [26] 常被用作神经网络中的激活 函数, 用于将变量映射至 0~1, 表示为 [27] 与交并比(intersection over union, IoU) [4] (1 ) ( ) [19] (记作 FCN), 文 献 [6]方法(记作 en-de), 文献 [7]中的方法(记作 u-net), deeplabv3+方法 [28] (1) 在图 9 易辨场景对比中, en-de 和 u-net 的…”
Section: 目前 已有大量针对烟尘图像分割问题的研unclassified
“…而纹理分析法过于依赖人工设计的特征, 以致方法的适应性不强, 应用于不同场景时表现 不佳 [15] . 目前, 深度学习被广泛应用于图像分类 [16] 、目 标检测 [17] (cross entropy, CE) [25] , 二分类条件下的 CE 表示为 Sigmoid 函数 [26] 常被用作神经网络中的激活 函数, 用于将变量映射至 0~1, 表示为 [27] 与交并比(intersection over union, IoU) [4] (1 ) ( ) [19] (记作 FCN), 文 献 [6]方法(记作 en-de), 文献 [7]中的方法(记作 u-net), deeplabv3+方法 [28] (1) 在图 9 易辨场景对比中, en-de 和 u-net 的…”
Section: 目前 已有大量针对烟尘图像分割问题的研unclassified
“…Secondly, small targets occupy little pixels and lack obvious texture and structure characteristics [4]. Thirdly, it is very difficult for the algorithm to balance the arithmetic speed and the detection effect [5,6]. Hence, infrared small and dim target detection is very difficult.…”
Section: Introductionmentioning
confidence: 99%
“…This approach is faster than the two-stage algorithms. Based on deep learning techniques, numerous researchers have made improvements to the respective algorithms in their specific research fields to detect ship targets at sea [11][12][13][14]. These advancements have yielded better detection results compared to comparative algorithms.…”
Section: Introductionmentioning
confidence: 99%