Following estrogenic activation, the estrogen receptor-␣ (ER␣) directly regulates the transcription of target genes via DNA binding. MicroRNAs (miRNAs) modulated by ER␣ have the potential to fine tune these regulatory systems and also provide an alternate mechanism that could impact on estrogen-dependent developmental and pathological systems. Through a microarray approach, we identify the subset of microRNAs (miRNAs) modulated by ER␣, which include upregulation of miRNAs derived from the processing of the paralogous primary transcripts (pri-) mir-17-92 and mir-106a-363. Characterization of the mir-17-92 locus confirms that the ER␣ target protein c-MYC binds its promoter in an estrogen-dependent manner. We observe that levels of pri-mir-17-92 increase earlier than the mature miRNAs derived from it, implicating precursor cleavage modulation after transcription. Pri-mir-17-92 is immediately cleaved by DROSHA to pre-miR-18a, indicating that its regulation occurs during the formation of the mature molecule from the precursor. The clinical implications of this novel regulatory system were confirmed by demonstrating that pre-miR-18a was significantly upregulated in ER␣-positive compared to ER␣-negative breast cancers. Mechanistically, miRNAs derived from these paralogous pri-miRNAs (miR-18a, miR-19b, and miR-20b) target and downregulate ER␣, while a subset of pri-miRNA-derived miRNAs inhibit protein translation of the ER␣ transcriptional p160 coactivator, AIB1. Therefore, different subsets of miRNAs identified act as part of a negative autoregulatory feedback loop. We propose that ER␣, c-MYC, and miRNA transcriptional programs invoke a sophisticated network of interactions able to provide the wide range of coordinated cellular responses to estrogen.AIB1 ͉ autoregulatory feedback loop ͉ primary transcript ͉ processing U pon 17--estradiol (E2) binding, estrogen receptors (ERs) mediate transcription by interacting directly to specific estrogen response elements (EREs) located in the promoter/ enhancer region of its target genes or indirectly by tethering to nuclear proteins, such as AP1 and SP1 transcription factors (2-4). The cellular response to estrogen is highly regulated at multiple levels including transcription, RNA stability, and posttranslational modifications (5-8). Following treatment with E2, ER␣ transcription and mRNA stability is substantially reduced within 1 h of stimulation (7). Furthermore, E2-ER␣ interactions accelerate receptor degradation through the ubiquitinproteasome pathway, an effect associated with its major coactivator AIB1 (8).MicroRNAs (miRNAs) are a class of noncoding short RNAs, 21-24 nucleotides (nt) in length, that play a role in gene regulation. They downregulate expression of their target genes by base pairing to the 3Ј-UTR of target messenger RNAs (mRNAs) (9). During their biogenesis most miRNAs are transcribed as part of a longer transcript named pri-miRNA (10). These molecules are processed inside the nucleus by DROSHA, producing a pre-miRNA that is a 70-nt ''imperfect'' stem loop ...