This paper presents the development of an environmentally friendly, small molecular depressant citrus pectin for improving the recovery of cassiterite resources. Citrus pectin extracted from citrus peel was utilized as the depressant, and it demonstrated significant potential in separating calcite from cassiterite in micro-flotation tests. The molecular weight of the citrus pectin extracted in this paper decreased from 11,485,412 Da to 32,959 Da compared to commercial pectin, resulting in the depressant efficiency of the reagent. The results of a zeta potential and adsorption test indicated that citrus pectin had less and weaker adsorption on the cassiterite surface and could be replaced with NaOL. The chemical adsorption process of citrus pectin on the surface of calcite was determined through FTIR spectroscopy analysis. XPS analysis results indicated that the interaction between the carboxyl groups of citrus pectin and calcium atoms enables adsorption to occur. The AFM revealed that citrus pectin displayed a uniform and dense pattern of point-like adsorption on the surface of calcite. Micro-flotation experiments showed that cassiterite recovery of 80% can be obtained at a citrus pectin dosage of 10 mg/L. Citrus pectin has the advantages of being low-cost, highly selective, and environmentally suitable, making it a promising alternative to conventional reagents.