The replication of plus-strand RNA viruses depends on subcellular membranes. Recent genome-wide screens have revealed that the sterol biosynthesis genes ERG25 and ERG4 affected the replication of Tomato bushy stunt virus (TBSV) in a yeast model host. To further our understanding of the role of sterols in TBSV replication, we demonstrate that the downregulation of ERG25 or the inhibition of the activity of Erg25p with an inhibitor (6-amino-2-n-pentylthiobenzothiazole; APB) leads to a 3-to 5-fold reduction in TBSV replication in yeast. In addition, the sterol biosynthesis inhibitor lovastatin reduced TBSV replication by 4-fold, confirming the importance of sterols in viral replication. We also show reduced stability for the p92 pol viral replication protein as well as a decrease in the in vitro activity of the tombusvirus replicase when isolated from APB-treated yeast. Moreover, APB treatment inhibits TBSV RNA accumulation in plant protoplasts and in Nicotiana benthamiana leaves. The inhibitory effect of APB on TBSV replication can be complemented by exogenous stigmasterol, the main plant sterol, suggesting that sterols are required for TBSV replication. The silencing of SMO1 and SMO2 genes, which are orthologs of ERG25, in N. benthamiana reduced TBSV RNA accumulation but had a lesser inhibitory effect on the unrelated Tobacco mosaic virus, suggesting that various viruses show different levels of dependence on sterol biosynthesis for their replication.Plus-stranded RNA [(ϩ)RNA] viruses usurp various intracellular/organellar membranes for their replication. These cellular membranes are thought to facilitate the building of viral factories, promote a high concentration of membrane-bound viral proteins, and provide protection against cellular nucleases and proteases (1,12,35,44). The membrane lipids and proteins may serve as scaffolds for targeting the viral replication proteins or for the assembly of the viral replicase complex. The subcellular membrane also may provide critical lipid or protein cofactors to activate/modulate the function of the viral replicase. Indeed, the formation of spherules, consisting of lipid membranes bended inward and viral replication proteins as well as recruited host proteins, has been demonstrated for several (ϩ)RNA viruses (20,30,48). These virus-induced spherules serve as sites of viral replication. Importantly, (ϩ)RNA viruses also induce membrane proliferation that requires new lipid biosynthesis. Therefore, it is not surprising that several genome-wide screens for the identification of host factors affecting (ϩ)RNA virus replication unraveled lipid biosynthesis/metabolism genes (8,23,38,50). However, in spite of these intensive efforts, understanding the roles of various lipids and lipid biosynthesis enzymes and pathways in (ϩ)RNA virus replication is limited.Tomato bushy stunt virus (TBSV) is among the most advanced model systems regarding the identification of host factors affecting (ϩ)RNA virus replication (32). Among the five proteins encoded by the TBSV genome, only the p33 re...