Rationale
Abnormal mechanosensing of smooth muscle cells (SMCs) resulting from the defective elastin-contractile units has been suggested to drive the formation of thoracic aortic aneurysms (TAAs); however, the precise molecular mechanism has not been elucidated.
Objective
The aim of this study was to identify the crucial mediator(s) involved in abnormal mechanosensing and propagation of biochemical signals during the aneurysm formation and to establish a basis for a novel therapeutic strategy.
Methods and Results
We used a mouse model of postnatal ascending aortic aneurysms (Fbln4SMKO; termed SMKO), in which deletion of Fbln4 leads to disruption of the elastin-contractile units caused by a loss of elastic lamina-SMC connections. In this mouse, upregulation of early growth response-1 (Egr1) and angiotensin converting enzyme leads to activation of angiotensin II signaling. Here we showed that the matricellular protein, thrombospondin-1 (Thbs1), was highly upregulated in SMKO ascending aortas and in human TAAs. Thbs1 was induced by mechanical stretch and Ang II in SMCs, for which Egr1 was required, and reduction of Fbln4 sensitized the cells to these stimuli and led to higher expression of Egr1 and Thbs1. Deletion of Thbs1 in SMKO mice prevented the aneurysm formation in approximately 80% of SMKO; Thbs1−/− (termed DKO) animals and suppressed slingshot-1 and cofilin de-phosphorylation, leading to the formation of normal actin filaments. Furthermore, elastic lamina-SMC connections were restored in DKO aortas and mechanical testing showed that structural and material properties of DKO aortas were markedly improved.
Conclusions
Thbs1 is a critical component of mechanotransduction as well as a modulator of elastic fiber organization. Maladaptive upregulation of Thbs1 results in disruption of elastin-contractile units and dysregulation of actin cytoskeletal remodeling, contributing to the development of ascending aortic aneurysms in vivo. Thbs1 may serve as a potential therapeutic target for treating TAAs.