2020) Functionalized selenium nanoparticles for targeted siRNA delivery silence Derlin1 and promote antitumor efficacy against cervical cancer, Drug Delivery, 27:1, 15-25, ABSTRACT Small interfering RNA (siRNA) exhibits great potential as a novel therapeutic option due to its highly sequence-specific ability to silence genes. However, efficient and safe delivery carriers are required for developing novel therapeutic paradigms. Thus, the successful development of efficient delivery platforms for siRNA is a crucial issue for the development of siRNA-based drugs in cancer treatments. In this study, biocompatible selenium nanoparticles (SeNPs) were loaded with RGDfC peptide to fabricate tumor-targeting gene delivery vehicle RGDfC-SeNPs. Subsequently, RGDfC-SeNPs were loaded with Derlin1-siRNA to fabricate RGDfC-Se@siRNA, which are functionalized selenium nanoparticles. RGDfC-Se@siRNA showed greater uptake in HeLa cervical cancer cells in comparison with that in human umbilical vein endothelial cells (HUVECs), verifying the RGDfC-mediated specific uptake of RGDfC-Se@siRNA. RGDfC-Se@siRNA was capable of entering HeLa cells via clathrin-associated endocytosis, and showed faster siRNA release in a cancer cell microenvironment in comparison with a normal physiological environment. qPCR and western blotting assays both indicated that RGDfC-Se@siRNA exhibited an obvious gene silencing efficacy in HeLa cells. RGDfC-Se@siRNA suppressed the invasion, migration and the proliferation of HeLa cells, and triggered HeLa cell apoptosis. Moreover, RGDfC-Se@siRNA induced the disruption of mitochondrial membrane potentials. Meanwhile, RGDfC-Se@siRNA enhanced the generation of reactive oxygen species (ROS) in HeLa cell, suggesting that mitochondrial dysfunction mediated by ROS might play a significant role in RGDfC-Se@siRNA-induced apoptosis. Interestingly, RGDfC-SeNPs@siRNA exhibited significant antitumor activity in a HeLa tumor-bearing mouse model. Additionally, RGDfC-SeNPs@siRNA is nontoxic to main organ of mouse. The above results indicate that RGDfC-Se@siRNA provides a promising potential for cervical cancer therapy.
ARTICLE HISTORY