The outbreak of new viruses, such as serve acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as well as the emerging of drug-resistance viruses highlight the urgent need for the development of broad-spectrum antiviral drugs. Herein, we report the discovery of a plant-derived small molecule, 6,8-dihydroxy-9-isobutyl-2,2,4,4-tetramethyl-7-(3-methylbutanoyl)-4,9-dihydro-1H-xanthene-1,3(2H)-dione (rhodomyrtone, RDT), which exhibited potent broad-spectrum antiviral activities against several RNA and DNA viruses, including SARS-CoV-2, respiratory syncytial virus (RSV), herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2 (HSV-2), varicella-zoster virus (VZV), human cytomegalovirus (HCMV), and Kaposi’s sarcoma-associated herpesvirus (KSHV). RDT can significantly suppress viral gene expression and show the low possibility to elicit drug-resistant variants. Mechanistic study implied that RDT inhibited viral infection by disturbing the cellular factors that essential for viral gene expression. Our results suggested that RDT might be a promising lead compound for the development of broad-spectrum antiviral drugs.