Salivary diagnostics is an emerging field that has progressed through several important developments in the past decade, including the publication of the human salivary proteome and the infusion of federal funds to integrate nanotechnologies and microfluidic engineering concepts into developing compact point-of-care devices for rapid analysis of this secretion. In this article, we discuss some of these developments and their relevance to the prognosis, diagnosis and management of periodontitis, as an oral target, and cardiovascular disease, as a systemic example for the potential of these biodiagnostics. Our findings suggest that several biomarkers are associated with distinct biological stages of these diseases and demonstrate promise as practical biomarkers in identifying and managing periodontal disease, and acute myocardial infarction. The majority of these studies have progressed through biomarker discovery, with the identified molecules requiring more robust clinical studies to enable substantive validation for disease diagnosis. It is predicted that with continued advances in this field the use of a combination of biomarkers in multiplex panels is likely to yield accurate screening tools for these diagnoses in the near future.
Keywordsacute myocardial infarction; lab-on-a-chip; periodontitis; salivary diagnosis
Overview of the field of salivary diagnosisThe analysis of blood and its components has been the mainstay for laboratory diagnostic procedures for several decades. However, other biological fluids are also utilized frequently for the diagnosis of disease, for example urine and cerebrospinal fluid, and thus, saliva could offer some distinct advantages in select situations [1][2][3][4][5][6]. Saliva is a hypotonic fluid
NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript composed mostly of water, electrolytes and organic molecules (i.e., amino acids, proteins and lipids). The water component is derived largely from the local capillary bed via intracellular diffusion, aquaporin water channels and extracellular routes [7,8]. Small neutral molecules from the serum enter by passive diffusion from the dense beds of capillaries surrounding and bathing the salivary glands. Electrolytes enter the saliva via osmotic gradients and are regulated by the rate of secretion, nature of the stimulus and level of mineralocorticoids in the circulation. The organic components of glandular saliva are derived largely from protein synthesis and are stored as granules within the acinar cells [4]. Because serum components of saliva are derived primarily from the local vasculature that originates from the carotid arteries [9], saliva has a prodigious fluid source that provides many, if not most, of the same molecules found in the systemic circulation. This makes saliva a potentially valuable fluid for the diagnosis of various systemic diseases (Figure 1).The recent cataloguing of the salivary proteome has availed considerable information that is potentially important for diagnostic applications ...