Let R be a noetherian ring which is a finite module over its centre Z(R). This paper studies the consequences for R of the hypothesis that it is a maximal Cohen Macaulay Z(R)-module. A number of new results are proved, for example projectivity over regular commutative subrings and the direct sum decomposition into equicodimensional rings in the affine case, and old results are corrected or improved. The additional hypothesis of homological grade symmetry is proposed as the appropriate extra lever needed to extend the classical commutative homological hierarchy to this setting, and results are proved in support of this proposal. Some speculations are made in the final section about how to extend the definition of the Cohen-Macaulay property beyond those rings which are finite over their centres.