A comparative study of the use of bio-inspired optimization technologies including the Cuckoo Search (CS) algorithm, the Differential Evolution (DE) algorithm, and Quantum-behaved Particle Swarm Optimization (QPSO) in the design of microstrip patch antennas for use in RF energy harvesting systems is presented. Radio frequency (RF) energy harvesting is considered as an eco-friendly energy source and has become a focus of intense research especially for use in distributed sensor networks. In a RF energy harvesting system, the antenna is responsible for capturing RF signals over a certain frequency band, and it is a vital element in determining the performance of the RF energy harvester. In this paper, a new mathematical weighted evaluation model involving antenna efficiency, center frequency, and bandwidth is proposed to evaluate the performance of a rectangular microstrip patch antenna (RMPA) for a RF harvesting system based on both the transmission-line model and the cavity model. With the evaluation model as the objective function, bio-inspired optimization approaches are utilized to determine the geometrical parameters of the optimal antenna based on given constraints. Moreover, the optimised designs of an antenna for harvesting energy from the Global System for Mobile Communications (GSM) frequency band are proposed via the mathematical model and bio-inspired optimization approaches using simulations. Furthermore, a comparative study of the DE, CS, and QPSO techniques is conducted via the evaluation of the properties of the antenna designs.