Objective: The goals of the research were to determine if a foamy effect on macrophages was due to human
endogenous retrovirus K102 (HERV-K102) replication, and to further address its potential significance in HIV-1
infection.Methods: An RT-PCR HERV-K HML-2 pol method was used to screen the unknown HERV, and isolated bands were
sent for sequencing. Confirmation of RNA expression was performed by a real time quantitative PCR (qPCR) pol ddCt
method. Rabbit antibodies to Env peptides were used to assess expression by immunohistology and processing of Env by
western blots. A qPCR pol ddCt method to ascertain genomic copy number was performed on genomic DNA isolated
from plasma comparing HIV-1 exposed seronegative (HESN) commercial sex workers (CSW) to normal controls and
contrasted with HIV-1 patients.Results: HERV-K102 expression, particle production and replication were associated with foamy macrophage generation
in the cultures of cord blood mononuclear cells under permissive conditions. A five-fold increased HERV-K102 pol
genomic copy number was found in the HESN cohort over normal which was not found in HIV-1 positive patients
(p=0.0005).Conclusions: This work extends the evidence that HERV-K102 has foamy virus attributes, is replication competent, and is
capable of high replication rate in vivo and in vitro. This may be the first characterization of a replication-competent,
foamy-like virus of humans. High particle production inferred by increased integration in the HESN cohort over HIV-1
patients raises the issue of the clinical importance of HERV-K102 particle production as an early protective innate
immune response against HIV-1 replication.