Silicon kerf residue is generated during the wafering process of pure silicon in the photovoltaic value chain. The generated by-product has a high volume, and the particle size is typically below 1 µm. Although the fine particles are partly oxidized, the material may be beneficial in different metallurgical applications such as grain refining and alloy composition adjustments. This work studies the dissolution behavior of silicon kerf in low alloy steel melts with the aim to upcycle the kerf material in the steel industry for different purposes. In this study, a steel alloy and the kerf residue were melted (at 1580 °C) in an alumina crucible placed in an induction furnace. The amount of added kerf residue was varied. The behavior of the particles in the solidified alloy was characterized by using an optical microscope, electron probe microscope (EPMA), and wavelength-dispersive X-ray spectroscopy (WDS) in order to study the dissolution behavior of the Si-kerf residue in the steel.