The scope of Bergman cyclization is expanded computationally by exploring the cyclization in inorganic B, N substituted derivative. This substitution has introduced polarity into the transition state, which resulted in dramatic lowering of the activation barrier. Natural charge distribution throughout the reaction profile has ascertained this hypothesis. Single B and N atom substitution at 1 and 6 terminal positions lowers the activation barrier by almost half of the original value which becomes even lower in the complete B, N analogue. The parent Bergman and single B, N substituted products were characterized by significant biradical character while the complete B, N substituted analogue was characterized by significant zwitterionic character. Reduction in electron delocalization is also observed in the complete B, N substituted analogue.