Using transient terahertz photoconductivity measurements, we have made noncontact, room temperature measurements of the ultrafast charge carrier dynamics in InP nanowires. InP nanowires exhibited a very long photoconductivity lifetime of over 1 ns, and carrier lifetimes were remarkably insensitive to surface states despite the large nanowire surface area-to-volume ratio. An exceptionally low surface recombination velocity (170 cm/s) was recorded at room temperature. These results suggest that InP nanowires are prime candidates for optoelectronic devices, particularly photovoltaic devices, without the need for surface passivation. We found that the carrier mobility is not limited by nanowire diameter but is strongly limited by the presence of planar crystallographic defects such as stacking faults in these predominantly wurtzite nanowires. These findings show the great potential of very narrow InP nanowires for electronic devices but indicate that improvements in the crystallographic uniformity of InP nanowires will be critical for future nanowire device engineering. KEYWORDS: InP, nanowire, terahertz, photoconductivity, surface recombination velocity, mobility S emiconductor nanowires are predicted to drive new generations of compact, ultrafast, and high efficiency electronic and optoelectronic devices. Among nanowire materials, InP is especially promising due to its direct band gap and high electron mobility. A multitude of prototype InP nanowire devices have been demonstrated including photodetectors, 1 light-emitting diodes, 2 waveguides, 3 solar cells, 4,5 and field effect transistors. 2,6 Despite these early successes, there remain many fundamental unanswered questions concerning the dynamics of charge carriers in nanowires, and the effects of nanowire size, surfaces, and crystal structure on nanowire electronic properties. A greater understanding of these effects is essential for the future engineering of nanowirebased devices.In this Letter, we examine the ultrafast carrier dynamics within InP nanowires and assess the effects of nanowire diameter, surfaces, and crystal structure. These investigations were performed using optical pump−terahertz probe (OPTP) spectroscopy, a technique which is ideally suited for nanowire studies because it is a noncontact ultrafast probe of room temperature photoconductivity with subpicosecond resolution.
7The contact-free nature of this technique confers a significant advantage over conventional electrical transport measurements, which are subject to artifacts associated with electrical contacts and the models used to extract data. 8,9 A further advantage is that the OPTP measurements are performed at room temperature, so its measurements of carrier mobility and lifetime are directly relevant to future InP nanowire-based devices which will be operated at room temperature.From OPTP measurements on InP nanowires of different diameters, we determine that surface recombination is negligible in InP nanowires. This result is despite the large surface area-to-volume rati...