Proper gene expression relies on a class of ubiquitously expressed, uridine-rich small nuclear RNAs (snRNAs) transcribed by RNA polymerase II (RNAPII). Vertebrate snRNAs are transcribed from a unique promoter, which is required for proper 3-end formation, and cleavage of the nascent transcript involves the activity of a poorly understood set of proteins called the Integrator complex. To examine 3-end formation in Drosophila melanogaster, we developed a cell-based reporter that monitors aberrant 3-end formation of snRNA through the gain in expression of green fluorescent protein (GFP). We used this reporter in Drosophila S2 cells to determine requirements for U7 snRNA 3-end formation and found that processing was strongly dependent upon nucleotides located within the 3 stem-loop as well as sequences likely to comprise the Drosophila equivalent of the vertebrate 3 box. Substitution of the actin promoter for the snRNA promoter abolished proper 3-end formation, demonstrating the conserved requirement for an snRNA promoter in Drosophila. We tested the requirement for all Drosophila Integrator subunits and found that Integrators 1, 4, 9, and 11 were essential for 3-end formation and that Integrators 3 and 10 may be dispensable for processing. Depletion of cleavage and polyadenylation factors or of histone pre-mRNA processing factors did not affect U7 snRNA processing efficiency, demonstrating that the Integrator complex does not share components with the mRNA 3-end processing machinery. Finally, flies harboring mutations in either Integrator 4 or 7 fail to complete development and accumulate significant levels of misprocessed snRNA in the larval stages.In eukaryotes, the major transcripts produced by RNA polymerase II (RNAPII) include the polyadenylated [poly (A) ϩ ] mRNAs, the replication-dependent histone mRNAs, and the Sm class of small nuclear RNAs (snRNAs). The 3Ј ends of these three general classes of RNAs are all formed by cotranscriptional cleavage, but each one has a distinct mechanism for 3Ј-end formation (for reviews, see references 29 and 32). In poly(A) ϩ and histone pre-mRNAs there are conserved upstream and downstream sequences that flank the cleavage site; factors bind to these sites and then recruit additional factors that initiate cleavage (53). In the case of poly(A) ϩ pre-mRNA, the upstream element is the canonical AAUAAA polyadenylation signal (PAS) and the downstream sequence is the G/Urich downstream element (DSE). Recognition of the PAS is carried out by the cleavage and polyadenylation specificity complex (CPSF) component CPSF160 via its RNA recognition motifs (RRM) (36), whereas the DSE is bound by the RRM of the cleavage stimulation factor (CstF) component CstF64 (28). Subsequent to this recognition event is recruitment of additional factors that activate the endonucleolytic cleavage between the PAS and the DSE.Histone pre-mRNA contains a distinct set of flanking elements. Upstream of the cleavage site is a conserved stem-loop structure (SL) and downstream a purine-rich element called the ...