Tubulin inhibitors can interfere with normal cell mitosis and inhibit cell proliferation through interfering with the normal structure and function of microtubules, forming spindle filaments. Indole, as a privileged pharmacological skeleton, has been widely used in anti-cancer inhibitors. A variety of alkaloids containing an indole core obtained from natural sources have been proven to inhibit tubulin polymerization, and an ever-increasing number of synthetic indole-based tubulin inhibitors have been reported. Among these, several kinds of indole-based derivatives, such as TMP analogues, aroylindoles, arylthioindoles, fused indole, carbazoles, azacarbolines, alkaloid nortopsentin analogues and bis-indole derivatives, have shown good inhibition activities towards tubulin polymerization. The binding modes and SARs investigations of synthetic indole derivatives, along with a brief mechanism on their anti-tubulin activity, are presented in this review.