We present photometry and spectroscopy for 27 pulsating hydrogen-atmosphere white dwarfs (DAVs, a.k.a. ZZ Ceti stars) observed by the Kepler space telescope up to K2 Campaign 8, an extensive compilation of observations with unprecedented duration (>75 days) and duty cycle (>90%). The space-based photometry reveals pulsation properties previously inaccessible to ground-based observations. We observe a sharp dichotomy in oscillation mode linewidths at roughly 800 s, such that white dwarf pulsations with periods exceeding 800 s have substantially broader mode linewidths, more reminiscent of a damped harmonic oscillator than a heat-driven pulsator. Extended Kepler coverage also permits extensive mode identification: We identify the spherical degree of 61 out of 154 unique radial orders, providing direct constraints of the rotation period for 20 of these 27 DAVs, more than doubling the number of white dwarfs with rotation periods determined via asteroseismology. We also obtain spectroscopy from 4m-class telescopes for all DAVs with Kepler photometry. Using these homogeneously analyzed spectra we estimate the overall mass of all 27 DAVs, which allows us to measure white dwarf rotation as a function of mass, constraining the endpoints of angular momentum in low-and intermediate-mass stars. We find that 0.51 − 0.73 M ⊙ white dwarfs, which evolved from 1.7 − 3.0M ⊙ ZAMS progenitors, have a mean rotation period of 35 hr with a standard deviation of 28 hr, with notable exceptions for higher-mass white dwarfs. Finally, we announce an online repository for our Kepler data and follow-up spectroscopy, which we collect at k2wd.org.