Through a reaction of alkaline transesterification of soybean oil using sodium methoxide, biodiesel denominated as B100 was obtained, with which four mixtures of diesel-biodiesel B2, B5, B10, and B20 were prepared. Kinematic viscosity and high heating value of the four blends, B100, and diesel were determined. The blends, B100, and diesel were used in a motor of four cylinders in-line engine, air intake at atmospheric pressure with a power of 250 hp and 6000 cm 3 , operating at a constant rate of 850 ± 50 rpm, a temperature of 25°C, and a relative humidity of 50%. To monitor the emissions, rpm, fuel consumption, and temperature in the engine's exhaust manifold, which operates with diesel-biodiesel mixtures, an integral instrument that uses the virtual instrumentation technology was developed in the programming platforms LabVIEW 2010 and ARDUINO. The development and implementation of the virtual instrument allow monitoring in real time the parameters of internal combustion engines and presents the versatility, flexibility, scalability, and capacity to function in equipment that operates with different liquid fuels at a lower cost than the one that conventional systems offered. These characteristics represent a significant benefit in comparison with the measurement and monitoring systems in the present market.