In this work we describe efforts to reduce the read noise in fully depleted, scientific charge-coupled devices (CCDs). The read noise is proportional to the total capacitance at the floating-diffusion node. Reductions in the capacitance at the floating diffusion are accomplished by implementing a direct contact between the output transistor, polysilicon-gate electrode and the floating diffusion. We have previously reported promising results for this technology that were measured on small-format CCDs with 4-channel readout where each channel had a different output transistor geometry. In this work we present the results of the use of this technology on 12 and 16-channel, large-format CCDs in order to determine the reproducibility of the process. The contact size for this work is two microns by two microns, and projection lithography was used to print the contacts. We have also utilized selective wafer-stepper lithography to generate contacts that are one micron on a side. We also describe efforts in the device design of the output transistor to further reduce the noise.