In order to realize the diagnosis of water distribution, this paper analyzes the interface polarization and macroscopic space charge polarization mechanism when the water distribution is non-uniform. The experimental results of this paper and bushing show that when the moisture distribution is non-uniform, there is a significant loss peak in the tanδ-f curve. The loss peak shifts to higher frequencies as the non-uniformity coefficient increases. There are common intersection points between multiple tanδ-f curves. Further, this paper realizes the diagnosis of the location of moisture distribution through Frequency Domain Spectroscopy (FDS) testing of different voltages and different wiring methods based on the macroscopic space charge polarization. In the single-cycle FDS test, when the positive electrode is first added to the area with higher moisture content, the amplitude of the tanδ-f curve is smaller. The tanδ-f curves under different wiring methods constitute a “ring-shaped” loss peak. As the voltage increases, the peak value of the loss peak shifts to the lower frequency band. As the temperature increases, the peak value of the loss peak shifts to higher frequencies. Based on the above rules and mechanism analysis, this research provides a new solution for the evaluation of moisture content of oil-immersed polymers equipment.