Circulating interleukin-6 (IL-6), insulin, and free fatty acid (FFA) concentrations are associated with impaired insulin action in obese and type 2 diabetic individuals. However, a causal relationship between elevated plasma FFAs and IL-6 has not been shown. Because skeletal muscle represents a major target of impaired insulin action, we studied whether FFAs may affect IL-6 expression in human myotubes. We demonstrate that specifically saturated FFAs, e.g. palmitate (0.25 mM), induce IL-6 mRNA expression and protein secretion by a proteasome-dependent mechanism that leads to a rapid and chronic activation of nuclear factor-B. Insulin, high glucose concentrations, or unsaturated FFAs did not activate IL-6 expression. In fact, the unsaturated FFA linoleate inhibited palmitate-induced IL-6 production. Because inhibition of palmitate metabolism by the acyl-CoA synthetase inhibitor triacsin C did not abolish IL-6 expression, it appears that the palmitate molecule per se exerts the observed effects. Furthermore, we show that in human myotubes, IL-6 activates the phosphorylation of signal transducer and activator of transcription 3 in concentrations similar to hepatocytes. However, no inhibitory effect of IL-6 on insulin action, determined as phosphatidylinositol 3-kinase association with insulin receptor substrate-1, Akt phosphorylation, and glycogen synthesis, was detected. We conclude that IL-6 expression may be modulated by the composition of circulating FFA, e.g. by diet, and that skeletal muscle cells could be target cells for IL-6.