Although the concept of ensiling large-round or large-square bales dates back to the late 1970s, many refinements have been made to both equipment and management since that time, resulting in much greater acceptance by small or mid-sized dairy or beef producers. This silage preservation technique is attractive to producers for several reasons, but the primary advantage is a reduced risk of weather damage to valuable forage crops compared with preservation as dry hay. Most core principles for making high-quality precision-chopped silages also apply to baled silages; among these, establishing and subsequently maintaining anaerobiosis are priorities. For baled silages, these priorities are critical, in part because recommended moisture concentrations (45 to 55%) are drier, and particle length is much longer. These factors act to restrict the rate and extent of silage fermentation, often resulting in less production of desirable fermentation acids and a greater (less acidic) final pH. Within this context, preservation of baled silages can be improved by applying polyethylene (PE) film wraps promptly, using an appropriate number of PE film layers (6 to 8), selecting a storage site free of sharp objects or other debris, and by monitoring wrapped bales closely for evidence of puncture, particularly by birds or vermin. Under certain conditions, such as those in which the bale moisture of highly buffered forages exceeds the recommended range, the heterogeneous nature of baled silages coupled with a restricted rate and extent of fermentation may increase susceptibility to clostridial activity compared with precision-chopped forages ensiled at comparable moisture concentrations. To date, research evaluating inoculants or other additives designed to improve the fermentation of challenging forages or aerobic stability has been limited, but should not be discontinued. Development of PE film embedded with an oxygen-limiting barrier has yielded positive results in some trials; however, most differences between these novel formulations and reputable commercial PE film have been related to decreases in yeast and mold counts at the surface layer. Related assessments of fermentation or nutritive value determined on a whole-bale basis have been less conclusive. Baled silages can be produced successfully by adhering to straightforward management principles; as such, this form of silage production is likely to remain popular for the foreseeable future.