Reservoir A is an Upper Jurassic reservoir in offshore Abu Dhabi, composing layers of dense anhydrite and porous mixed lithology of dolomite and limestone. Petrophysical study from multiple wells suggests that the rock quality within the reservoir has significant lateral and vertical variations that can result in different flow capacities. Consequently, it is crucial to identify the rock quality variations and the consequent flow capacity in horizontal wells to optimize development plan, ideally in real-time. However, these lateral and vertical variations are not visible from conventional porosity (density / neutron) logs, making identification of rock quality very challenging. This paper introduces an innovative magnetic resonance (NMR)-based real-time method of permeability prediction and rock typing.
Wireline logs including NMR were acquired in a pilot well, providing porosity and extensive T2-based information (permeability index, irreducible and movable fluid volume and porosity partition). Routine core analysis was also available to calibrate the NMR data, achieving a suitable correlation for NMR permeability index calibration in this field. Several rock types could be identified with the Windland R35 technique using porosity and calibrated permeability from NMR. This identification was then validated by rock types from cores. The application of knowledge gained from the study led to advanced reservoir characterization solely based on the NMR log. The process was applied to high-angle and horizontal (HAHZ) wells where the NMR full-spectrum log while drilling was available.
Several slanted wells were drilled with a fit-for-purpose logging-while-drilling (LWD) suite including NMR for geo-steering and formation evaluation. The real-time LWD NMR data helped trace a remarkable change of irreducible water level through certain layers, suggesting that the subzones of Reservoir A changed pore geometry and rock type laterally, resulting in variations of flow capacity and reservoir performance.
In one example, this method indicated unexpected good rock quality in one of these subzones considering the experience from offset well. Subsequently, the LWD formation-testing tool confirmed the result with mobility measurements, proving the NMR-based methodology was valid.
This process normally applies to memory data after drilling, playing a key role in designing completion strategy in a timely manner. The process is also available in real-time while drilling if full NMR data is transmitted to surface, serving as a safer logging-tool for identification of sub-zones with additional valuable information compared to regular porosity tools with chemical radioactive source.