KRAS is the most frequently mutated oncogene. The incidence of specifi c KRAS alleles varies between cancers from different sites, but it is unclear whether allelic selection results from biological selection for specifi c mutant KRAS proteins. We used a crossdisciplinary approach to compare KRAS G12D , a common mutant form, and KRAS A146T , a mutant that occurs only in selected cancers. Biochemical and structural studies demonstrated that KRAS A146T exhibits a marked extension of switch 1 away from the protein body and nucleotide binding site, which activates KRAS by promoting a high rate of intrinsic and guanine nucleotide exchange factorinduced nucleotide exchange. Using mice genetically engineered to express either allele, we found that KRAS G12D and KRAS A146T exhibit distinct tissue-specifi c effects on homeostasis that mirror mutational frequencies in human cancers. These tissue-specifi c phenotypes result from allele-specifi c signaling properties, demonstrating that context-dependent variations in signaling downstream of different KRAS mutants drive the KRAS mutational pattern seen in cancer. SIGNIFICANCE: Although epidemiologic and clinical studies have suggested allele-specifi c behaviors for KRAS , experimental evidence for allele-specifi c biological properties is limited. We combined structural biology, mass spectrometry, and mouse modeling to demonstrate that the selection for specifi c KRAS mutants in human cancers from different tissues is due to their distinct signaling properties.